Acta Crystallographica Section C

Crystal Structure

Communications

Sanjay Sarkhel et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

Dysobinin, a tetranortriterpenoid ${ }^{1}$

Sanjay Sarkhel, ${ }^{\text {a }}$ Girish K. Jain, ${ }^{\text {b }}$ Satywan Singh, ${ }^{\text {b }}$
Hosahalli S. Subramanya ${ }^{\text {a }}$ and Prakas R. Maulik ${ }^{\text {a }}$

${ }^{\text {a }}$ Division of Membrane Biology, Central Drug Research Institute, Chattar Manzil Palace, Post Box No. 173, Lucknow 226 001, India, and bivision of Pharmaceutics, Central Drug Research Institute, Chattar Manzil Palace, Post Box No. 173, Lucknow 226 001, India
Correspondence e-mail: root@cscdri.ren.nic.in

Received 13 March 2000
Accepted 18 April 2000

Data validation number: IUC0000117
The planar furan ring in the title compound (6β-acetoxyazadirone, $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{6}$) is twisted with respect to the steroid D ring. The crystal structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and van der Waals interactions.

Comment

Dysobinin is a tetranortriterpenoid belonging to the meliacin class of compounds and was isolated from Dysoxylum binecteriferum in around 2% yield (Singh et al., 1976). It is an example of a growing family of meliacins and is of chemotaxonomic importance as it is a 6-acetoxy derivative of azadirone occurring in Melia azadirachta, a plant of the same family. This, together with the structural diversity of meliacin, prompted us to undertake the present study of (I).

(I)

The molecule contains one fused-ring system $(A / B / C / D)$ with eight chiral centres and one furan ring (E). The torsion angles (Table 1) and least-squares-plane calculations (Table 2) indicate that ring A is a puckered sofa, while rings B and C adopt a distorted chair and a boat conformation, respectively. These three rings are trans-fused with each other. The cyclopentene ring (D) is in an envelope conformation. The furan ring (E) is planar, α-substituted and twisted with respect to the cyclopentene ring.

The present study does not establish the absolute configuration of the title molecule. However, based on literature precedence (Lavie et al., 1971), all the triterpenoids have the methyl group at $\mathrm{C} 10 \beta$-oriented in their absolute configuration. Accordingly, the C18 and C19 methyl groups in the title molecule have a β orientation, while the C 20 methyl group has an α orientation. The two acetoxy groups at the chiral centres, C 6 and C7, whose relative stereochemistry is S and R, have α equatorial and α-axial configurations, respectively. The crystal structure analysis reveals the presence of weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 3). These weak hydrogen-bond interactions play a significant role in the stabilization of the solid-state structure (Desiraju, 1996).

Experimental

Dysobinin was isolated from the alcoholic extract of the air-dried powdered fruits of Dysoxylum binecteriferum (Singh et al., 1976). Diffraction-quality crystals were obtained by slow evaporation from a methanol solution at room temperature.

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{6}$
$M_{r}=494.60$
Orthorhombic, $P 2_{1} 2_{1} 2$
$a=12.426$ (3) A
$b=29.446$ (10) \AA
$c=7.450(9) \AA$
$V=2726(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=5.84-9.98^{\circ}$
$\mu=0.083 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$
$D_{x}=1.205 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4 diffractometer
$\theta_{\text {max }}=24.94^{\circ}$
$h=0 \rightarrow 13$
$\omega-2 \theta$ scans
$k=0 \rightarrow 31$
4725 measured reflections
2658 independent reflections
1552 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
3 standard reflections frequency: 60 min intensity decay: $<0.5 \%$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0716 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=0.971$
$(\Delta / \sigma)_{\max }=0.004$
2658 reflections
332 parameters
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.22 \mathrm{e}_{\AA^{-3}}$

Table 1
Selected torsion angles (${ }^{\circ}$).

$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$1.3(7)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$56.2(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-27.8(7)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$-54.0(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$8.4(5)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 11-\mathrm{C} 12$	$39.7(6)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$33.5(5)$	$\mathrm{C} 9-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$16.1(7)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-60.3(4)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 20$	$72.3(6)$
$\mathrm{H} 5-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 18$	174.8	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-52.6(6)$
$\mathrm{C} 19-\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9$	175.6	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 14-\mathrm{C} 13$	$17.7(5)$
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 4$	$61.0(4)$	$\mathrm{C} 17-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-20.4(5)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$58.2(4)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 8$	$35.1(5)$
C6-C7-C8-C9	$-51.0(4)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$1.9(6)$
C14-C8-C9-C11	$-55.8(4)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$18.2(6)$
C7-C8-C9-C10	$50.8(4)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 13$	$-29.5(5)$
C2-C1-C10-C5	$39.2(5)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 17-\mathrm{C} 16$	$30.3(4)$
C4-C5-C10-C1	$-55.6(4)$	$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 30-\mathrm{C} 29$	$33.2(7)$

[^0]Table 2
Least-squares-planes data showing the deviations of atoms from the mean plane defined by atoms marked with an asterisk (*).

Plane 1		Plane 2	
C1*	0.1239	C5*	-0.0301
C2*	-0.1614	C6*	0.0300
C3*	0.0742	C7	-0.6321
C4*	0.0322	C8*	-0.0296
C5*	-0.0689	C9*	0.0297
C10	0.6730	C10	0.6852
C18	2.2072	C18	2.2436
		C19	1.3300
Plane 3			
C8*	0.1045	Plane 4	
C9	-0.5947	C13*	-0.0063
C11*	-0.1043	C14*	0.0119
C12*	0.1070	C15*	-0.0121
C13	-0.5449	C16*	0.0065
C14*	-0.1073	C17	0.5085
C19	1.6297		
C20	-2.0582		
		Plane 6	
		C27*	0.0030
Plane 5		C28*	0.0012
C13*	-0.1711	C29*	0.0005
C14*	0.0783	C30*	-0.0021
C15*	0.0499	O6*	-0.0026
C16*	-0.1613		
C17*	0.2043		
C30	-0.3501		

Data collection: CAD-4-MACH/PC (Enraf-Nonius, 1993); cell refinement: $C A D-4-M A C H / P C$; data reduction: $N R C V A X$ (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $N R C V A X$; software used to prepare material for publication: SHELXL97.

Table 3
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{OB}^{\mathrm{i}}$	0.98	2.57	$3.437(6)$	147
$\mathrm{C} 20-\mathrm{H} 20 C \cdots \mathrm{OB}^{\mathrm{i}}$	0.96	2.57	$3.501(6)$	164
$\mathrm{C} 28-\mathrm{H} 28 \cdots \mathrm{O} 5^{\mathrm{ii}}$	0.93	2.54	$3.413(8)$	157
Symmetry codes: (i) $x, y, z-1 ;$ (ii) $2-x,-y, z-1$.				

SS is grateful to DBT (India) for financial support. We thank Professor P. K. Bharadwaj (IIT, Kanpur) for providing the X-ray diffractometer facility from the DST (India) funded National Centre.

References

Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.
Enraf-Nonius (1993). CAD-4-MACH/PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Lavie, D., Levy, E. C. \& Jain, M. K. (1971). Tetrahedron, 27, 3927-3939. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Singh, S., Garg, H. S. \& Khanna, N. M. (1976). Phytochemistry, 15, 2001-2002.

[^0]: ${ }^{1}$ CDRI communication No. 5802.

